« Espaces vectoriels normés/Exercices/Dimension finie » : différence entre les versions

Une page de Wikiversité, la communauté pédagogique libre.
Contenu supprimé Contenu ajouté
mAucun résumé des modifications
m typo
Ligne 15 : Ligne 15 :
}}
}}


== Exercice 3-2 : Densité de GL{{ind|''n''}}==
== Exercice 3-2 : densité de GL{{ind|''n''}}==
Soit <math>K=\R</math> ou <math>\Complex</math>. Démontrer que dans <math>\mathrm M_n(K)</math> (muni d'une norme arbitraire), le sous-ensemble <math>\mathrm{GL}_n(K)</math> des matrices inversibles est dense.
Soit <math>K=\R</math> ou <math>\Complex</math>. Démontrer que dans <math>\mathrm M_n(K)</math> (muni d'une norme arbitraire), le sous-ensemble <math>\mathrm{GL}_n(K)</math> des matrices inversibles est dense.
{{Solution|contenu=
{{Solution|contenu=

Version du 10 août 2019 à 23:13

Dimension finie
Image logo représentative de la faculté
Exercices no3
Leçon : Espaces vectoriels normés
Chapitre du cours : Dimension finie

Exercices de niveau 15.

Exo préc. :Applications linéaires continues
Exo suiv. :Sommaire
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Dimension finie
Espaces vectoriels normés/Exercices/Dimension finie
 », n'a pu être restituée correctement ci-dessus.



Exercice 3-1

Soit . Montrer que son exponentielle est un polynôme en ou plus généralement, que pour toute fonction d'une variable complexe développable en série entière en , avec un rayon de convergence strictement supérieur à la norme subordonnée de (pour une norme arbitraire fixée sur ).

Exercice 3-2 : densité de GLn

Soit ou . Démontrer que dans (muni d'une norme arbitraire), le sous-ensemble des matrices inversibles est dense.

Exercice 3-3 : extrema d'une fonction continue

Soit une application continue, admettant à l'infini une limite (finie ou infinie) :

.

On pose et (donc ).

  1. Montrer que si , alors la valeur est atteinte (autrement dit : c'est un minimum).
  2. En déduire que (sans cette hypothèse) admet un extremum.
  3. En déduire également que si est finie, alors est bornée.

(Ceci généralise les exercices 3 et (en partie) 2 de Fonctions d'une variable réelle/Exercices/Continuité.)