« Discussion utilisateur:Cgolds » : différence entre les versions

Le contenu de la page n’est pas pris en charge dans d’autres langues.
Une page de Wikiversité, la communauté pédagogique libre.
Contenu supprimé Contenu ajouté
Cgolds (discussion | contributions)
m →‎DTF : expression simple
Cgolds (discussion | contributions)
m correction typographie
Ligne 6 : Ligne 6 :
''<u>Si</u> n est un nombre simplement pair (resp multi-pair), <u>alors</u> pour tout k entier, n + 4k est simplement pair (resp multi-pair)''. Comment le diriez-vous plus adroitement SVP ? [[Utilisateur:Supreme assis|<font color="darkslategray">Supreme assis</font>]] ([[Discussion Utilisateur:Supreme assis|<font color="darkslategray">''grain de sel''</font>]]) 18 janvier 2019 à 16:15 (UTC)
''<u>Si</u> n est un nombre simplement pair (resp multi-pair), <u>alors</u> pour tout k entier, n + 4k est simplement pair (resp multi-pair)''. Comment le diriez-vous plus adroitement SVP ? [[Utilisateur:Supreme assis|<font color="darkslategray">Supreme assis</font>]] ([[Discussion Utilisateur:Supreme assis|<font color="darkslategray">''grain de sel''</font>]]) 18 janvier 2019 à 16:15 (UTC)


:{{Notif|Supreme assis}}. Vos nombres simplement pairs sont ceux divisibles par 2 et pas par 4 (ils correspondent à ce qu’Euclide appelle impairement pairs), les multi-pairs sont ceux divisibles par 4 (les pairement pairs d’Euclide). 4k est toujours pairement pair (ou "multi-pair comme vous dites). J’écrirais donc simplement : "si n est divisible par 2 et pas par 4 (resp. est divisible par 4), alors il en est de même pour n+4k, pour tout k". Cela suffit en principe. Si vous voulez aussi donner une preuve et qu’elle soit accessible au plus grand nombre : "Si n est divisible par 2 et pas par 4, il s’écrit n= 2n’, avec n’ impair. Donc n+4k s’écrit 2n’+4k= 2(n’+2k). Si n’ est impair, il en est de même pour n’+2k donc n+4k est divisible par 2, mais pas par 4. Pour le deuxième cas, si n est divisible par 4, il s’écrit n=4n’, donc n+4k=4(n’+k), ce qui montre que n+4k est aussi divisble par 4". Cordialement, --[[Utilisateur:Cgolds|Cgolds]] ([[Discussion utilisateur:Cgolds|discussion]]) 18 janvier 2019 à 16:28 (UTC)
:{{Notif|Supreme assis}}. Vos nombres simplement pairs sont ceux divisibles par 2 et pas par 4 (ils correspondent à ce qu’Euclide appelle impairement pairs), les multi-pairs sont ceux divisibles par 4 (les pairement pairs d’Euclide). 4k est toujours pairement pair (ou "multi-pair" comme vous dites). J’écrirais donc simplement : "si n est divisible par 2 et pas par 4 (resp. est divisible par 4), alors il en est de même pour n+4k, pour tout k". Cela suffit en principe. Si vous voulez aussi donner une preuve et qu’elle soit accessible au plus grand nombre : "Si n est divisible par 2 et pas par 4, il s’écrit n= 2n’, avec n’ impair. Donc n+4k s’écrit 2n’+4k= 2(n’+2k). Si n’ est impair, il en est de même pour n’+2k donc n+4k est divisible par 2, mais pas par 4. Pour le deuxième cas, si n est divisible par 4, il s’écrit n=4n’, donc n+4k=4(n’+k), ce qui montre que n+4k est aussi divisible par 4". Cordialement, --[[Utilisateur:Cgolds|Cgolds]] ([[Discussion utilisateur:Cgolds|discussion]]) 18 janvier 2019 à 16:28 (UTC)

Version du 18 janvier 2019 à 16:37

DTF

Si c'est une question de forme, vous pouvez (devez) m'aider.

Pour les nombres SIMPLEMENT-PAIRS et MULTI-PAIRS, vous pouvez infirmer ou confirmer la proposition :
Si n est un nombre simplement pair (resp multi-pair), alors pour tout k entier, n + 4k est simplement pair (resp multi-pair). Comment le diriez-vous plus adroitement SVP ? Supreme assis (grain de sel) 18 janvier 2019 à 16:15 (UTC)[répondre]

Notification Supreme assis :. Vos nombres simplement pairs sont ceux divisibles par 2 et pas par 4 (ils correspondent à ce qu’Euclide appelle impairement pairs), les multi-pairs sont ceux divisibles par 4 (les pairement pairs d’Euclide). 4k est toujours pairement pair (ou "multi-pair" comme vous dites). J’écrirais donc simplement : "si n est divisible par 2 et pas par 4 (resp. est divisible par 4), alors il en est de même pour n+4k, pour tout k". Cela suffit en principe. Si vous voulez aussi donner une preuve et qu’elle soit accessible au plus grand nombre : "Si n est divisible par 2 et pas par 4, il s’écrit n= 2n’, avec n’ impair. Donc n+4k s’écrit 2n’+4k= 2(n’+2k). Si n’ est impair, il en est de même pour n’+2k donc n+4k est divisible par 2, mais pas par 4. Pour le deuxième cas, si n est divisible par 4, il s’écrit n=4n’, donc n+4k=4(n’+k), ce qui montre que n+4k est aussi divisible par 4". Cordialement, --Cgolds (discussion) 18 janvier 2019 à 16:28 (UTC)[répondre]