« Topologie générale/Continuité et homéomorphismes » : différence entre les versions

Une page de Wikiversité, la communauté pédagogique libre.
Contenu supprimé Contenu ajouté
Ligne 65 : Ligne 65 :
*5 ⇒ 4 : en posant ''B = f''(''A'') et en utilisant le fait que ''A'' est inclus dans ''f ''<sup>–1</sup>(''f''(''A'')).
*5 ⇒ 4 : en posant ''B = f''(''A'') et en utilisant le fait que ''A'' est inclus dans ''f ''<sup>–1</sup>(''f''(''A'')).
*4 ⇒ 3 : en posant ''A = f ''<sup>–1</sup>(''G'') et en utilisant le fait que ''f''(''f ''<sup>–1</sup>(''G'')) est inclus dans ''G''.
*4 ⇒ 3 : en posant ''A = f ''<sup>–1</sup>(''G'') et en utilisant le fait que ''f''(''f ''<sup>–1</sup>(''G'')) est inclus dans ''G''.
}}

==Continuité et espaces produits==
{{Propriété|contenu=
Soit <math>(X_i,\mathcal T_i)_{i\in I}</math> une famille d'espaces topologiques, <math>(X,\mathcal T)</math> l'[[../Espace produit|espace produit]] et <math>Y</math> un espace topologique.
*Les projections canoniques <math>p_i:X\to X_i\quad (i\in I)</math> sont à la fois :
**continues (l'image réciproque d'un ouvert de <math>X_i</math> est un ouvert de <math>X</math>) ;
**[[w:Applications ouvertes et fermées|ouvertes]] (l'image directe d'un ouvert de <math>X</math> est un ouvert de <math>X_i</math>).
*Une application <math>f:Y\to X</math> est continue si et seulement si ses composantes <math>p_i\circ f:Y\to X_i</math> le sont.
*Si une application <math>g:X\to Y</math> est continue alors ses applications partielles le sont (l'application partielle associée à un point <math>a\in X</math> et à indice <math>i</math> étant : <math>X_i\to Y,\ t\mapsto g(x)</math> où <math>x_i=t</math> et <math>\forall j\ne i\quad x_j=a_j</math>).
}}
}}


== Caractérisation séquentielle ==
== Caractérisation séquentielle ==
{{Wikipédia|Espace à bases dénombrables de voisinages}}
{{Wikipédia|Espace à bases dénombrables de voisinages}}
Si tout point de <math>X</math> admet une [[../Bases#Base de voisinages|base de voisinages]] (finie ou) dénombrable — ''en particulier si <math>X</math> est un [[Topologie générale/Espace métrique|espace métrique]]'' — on dispose d'une caractérisation plus intuitive :
Si tout point de <math>X</math> admet une [[../Bases#Base de voisinages|base de voisinages]] (finie ou) dénombrable — ''en particulier si <math>X</math> est un [[Topologie générale/Espace métrique|espace métrique]]'' — on dispose de caractérisations plus intuitives de l'adhérence et de la continuité :


{{Proposition|contenu=
{{Proposition|contenu=

Version du 3 avril 2017 à 21:35

Début de la boite de navigation du chapitre
Continuité et homéomorphismes
Icône de la faculté
Chapitre no 7
Leçon : Topologie générale
Chap. préc. :Dénombrabilité
Chap. suiv. :Suites
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Topologie générale : Continuité et homéomorphismes
Topologie générale/Continuité et homéomorphismes
 », n'a pu être restituée correctement ci-dessus.
descriptif indisponible
Wikipedia-logo-v2.svg
Wikipédia possède un article à propos de « Continuité ».

Au lycée, on dit d'une fonction qu'elle est continue si on peut la tracer sans lever le crayon. Mais considérons une courbe de longueur infinie : impossible de la tracer avec un crayon ! La notion de continuité s'est clarifiée au XIXe siècle, grâce notamment aux travaux de Cauchy.

Limite



Continuité en un point



Continuité globale

Soient et deux espaces topologiques et une application.



Continuité et espaces produits

Caractérisation séquentielle

descriptif indisponible
Wikipedia-logo-v2.svg
Wikipédia possède un article à propos de « Espace à bases dénombrables de voisinages ».

Si tout point de admet une base de voisinages (finie ou) dénombrable — en particulier si est un espace métrique — on dispose de caractérisations plus intuitives de l'adhérence et de la continuité :