« Introduction à la thermodynamique/Chaleur » : différence entre les versions

Aller à la navigation Aller à la recherche
m
Celsius
(maintenance)
m (Celsius)
== Chaleur massique ==
 
''Question'' : D'après vous, tous les corps ont-ils besoin de la même quantité d'énergie pour élever de {{Unité|1|{{Abréviation|°C|degré CelciusCelsius}}}} {{Unité|1|{{Abréviation|kg|kilogramme}}}} de matière ?
 
{{clr}}
{{Propriété
| contenu =
La '''chaleur massique''' est la quantité de chaleur ou d'énergie qu'il faut fournir à un corps pour élever une masse de {{Unité|1|{{Abréviation|kg|kilogramme}}}} de {{Unité|1|{{Abréviation|°C|degré CelciusCelsius}}}}.
 
''Unité'' : '''J/kg.{{Abréviation|°C|degré CelciusCelsius}}''' (joule / kilogramme . degrés Celsius) et elle est notée '''Cp'''
 
À noter que pour un même corps, la valeur de la chaleur massique change avec la température :
}}
 
''Remarque'' : pour l'eau, entre {{Unité|0|{{Abréviation|°C|degré CelciusCelsius}}}} et {{Unité|100|{{Abréviation|°C|degré CelciusCelsius}}}}, on considèrera qu'il faut 4,18 kJ/kg.{{Abréviation|°C|degré CelciusCelsius}} (quasiment constant)
 
Au-delà, il faudra faire la moyenne entre la valeur du Cp à la température initiale et la valeur du Cp à la température finale (le Cp moyen est notée <math>\scriptstyle \overline {Cp}</math>).
=== Exercices Résolus ===
 
'''1.''' Quel est le <math>\scriptstyle \overline {Cp}</math> lorsque l'on veut élever la température de l'eau de {{Unité|180|{{Abréviation|°C|degré CelciusCelsius}}}} à {{Unité|240|{{Abréviation|°C|degré CelciusCelsius}}}} ?
 
{{Solution
| contenu =
* On cherche grâce à l'abaque Cp=f(T), la valeur du Cp à {{Unité|180|{{Abréviation|°C|degré CelciusCelsius}}}} et la valeur du Cp à {{Unité|240|{{Abréviation|°C|degré CelciusCelsius}}}} (il est conseillé de travailler avec les kJ (kilojoules) pour éviter d'encombrer les formules. On veillera donc à utiliser le kJ pour l'unité du résultat) :
 
<math>\overline {Cp} = \frac {Cp_{180} + Cp_{240}}{2} = \frac {4,39 + 4,76}{2} = \frac {9,15}{2} = 4,575\,kJ/kg.^\circ C</math>}}
 
'''2.''' Quel est le <math>\scriptstyle \overline {Cp}</math> lorsque l'on veut élever la température de l'eau de {{Unité|30|{{Abréviation|°C|degré CelciusCelsius}}}} à {{Unité|180|{{Abréviation|°C|degré CelciusCelsius}}}} ?
 
{{Solution
| contenu =
* Dans ce cas, il faut décomposer le calcul en deux parties :
:* le <math>\overline {Cp_1}</math> de {{Unité|30|{{Abréviation|°C|degré CelciusCelsius}}}} à {{Unité|100|{{Abréviation|°C|degré CelciusCelsius}}}}, qui est de 4,18 kJ/kg.{{Abréviation|°C|degré CelciusCelsius}}
:* le <math>\overline {Cp_2}</math> de {{Unité|100|{{Abréviation|°C|degré CelciusCelsius}}}} à {{Unité|180|{{Abréviation|°C|degré CelciusCelsius}}}}, qui est de 4,285 kJ/kg.{{Abréviation|°C|degré CelciusCelsius}} :
<math>\overline {Cp_2} = \frac {Cp_{100} + Cp_{180}}{2} = \frac {4,18 + 4,39}{2} = \frac {8,57}{2} = 4,285\,kJ/kg.^\circ C</math>}}
 
{{Définition
| contenu =
La '''quantité de chaleur''' est la chaleur nécessaire pour porter la température d'un corps de la température t1 à t2 (en {{Abréviation|°C|degré CelciusCelsius}}).
 
L'unité est le '''joule''' et est notée : '''Q'''
 
* '''La température initiale''' et '''la température finale''' :
::Je ne vous apprends pas qu'il ne faut pas la même quantité d'énergie pour élever de l'eau de {{Unité|25|{{Abréviation|°C|degré CelciusCelsius}}}} à {{Unité|30|{{Abréviation|°C|degré CelciusCelsius}}}} que de {{Unité|0|{{Abréviation|°C|degré CelciusCelsius}}}} à {{Unité|300|{{Abréviation|°C|degré CelciusCelsius}}}}.
 
* '''La chaleur massique de ce corps''' :
* <math>\textstyle Q</math> : J
* <math>\textstyle m</math> : kg
* <math>\textstyle C_p</math> : J/kg.{{Abréviation|°C|degré CelciusCelsius}}
* <math>\textstyle \Delta t</math> : {{Abréviation|°C|degré CelciusCelsius}} ( <math>\textstyle = t_{finale} - t_{initiale}</math> )}}
 
 
=== Exercices résolus ===
 
'''1.''' Quelle quantité de chaleur faut-il pour élever la température de {{Unité|5|{{Abréviation|kg|kilogramme}}}} d'eau de {{Unité|20|{{Abréviation|°C|degré CelciusCelsius}}}} à {{Unité|100|{{Abréviation|°C|degré CelciusCelsius}}}} ?
 
{{Solution
On cherche nos 3 paramètres servant à l'équation :
* La masse : 5 (kg)
* Le delta de température : 100 - 20 = 80 ({{Abréviation|°C|degré CelciusCelsius}})
* La chaleur massique : 4,18 kJ/kg.{{Abréviation|°C|degré CelciusCelsius}} (Voir remarque du [[Changements d'états/Chaleur#Chaleur massique|paragraphe sur la chaleur massique]])
On applique la formule :
<math>Q = m \times C_p \times \Delta t = 5 \times 4,18 \times 80 = 1\,672\,kJ</math>
195

modifications

Menu de navigation